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LANCZOS ALGORITHM - FE VERSION
T = K™'Mg
=T~ o) — Big;y
% = g"MF,
B = (1, ™M1
Qi+ = (I/Bj+1)rj
By = (roMrj)uz

The algorithm for recursively forming Lanczos vector gj4 from Lanczos vector qj

for the case of nonsingular K is shown. It involves an orthogonalization step and a nor-
malization step.

STARTING VECTOR
F = be(t)
r,=K'b

Qi = (1/Bpr,

Bl = (roTMro)l/2

Lanczos modes are most useful when the spatial distribution of the excitation is
constant. This load distribution then determines the starting vector.



LANCZOS EQUATION FORMAT
Mi + Ku=F
MK~ Mii + Mu = MK™'F
u=Quz
Qn = (41929l

Q, ™MK 'MQ, 7 + QTMQpz = Q"MK ™'F

Lanczos vectors are used in a mode-superposition manner which is not exactly the

same as the familiar Rayleigh-Ritz version of mode-superposition. Multiplication by the
equation of MK~ "smooths" the loading.

LANCZOS EQUATION FORMAT - CONT.
TpZ +Z=8n
g, = Q. MK'F
P a; By T

By oy B3

B3

Brm

| Pm O |

The final Lanczos equations have a tridiagonal generalized mass matrix and have a
unit matrix for the generalized stiffness matrix. The form of the generalized force vector

8m is very special.
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EXAMPLES

+ Lanczos Modes and Equations

» Comparison of Normal Mode Models and
Lanczos Mode Models

+ Poles and Zeros
+ Frequency Response Functions

+ Transient Response
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FE LANCZOS MODE MODEL
Tm.z. tz=g,

[0.39770 0.04361 0.0 0.0 0.0

0.04361 0.04234 0.01238 0.0 0.0
0.0 0.01238 0.01564 0.00516 0.0
0.0 0.0 0.00516 0.00830 0.00221

0.57735
0.0

o =9 (_)9 }f{t\
°o (VAV) bt
0.0
0.0

Note that there is tridiagonal inertia coupling of the Lanczos generalized coordi-
nates, but note that the only Lanczos coordinate directly excited by the external force is

the first coordinate.

0.0
0.0
0.0
0.0

0.0 0.0 0.0  0.00221 0.00505 0.00083
L 0.0 0.0 0.0 0.0  0.00083 0.00320 ]
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Typical normal modes and Lanczos vectors are shown here for axial deformation
of a clamped-free rod. The starting Lanczos vector is based on a single force applied at
the "free" end. Although finite element normal modes do have some stain near the free
end, "exact" normal modes would all be strain-free at the end where the excitation force
is applied.




TRANSFER FUNCTIONS IN MODAL COORDINATES
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TRANSFER FUNCTIONS - NORMAL MODE MODELS
i, (s)/f(s) = 10.34151[s%+3.28270)%][s%+(6.82929)?]

[s2+(10.94259)2)/A,

Ay(s) = [s2+(1.57528)2)[s>+(4.83424)2]

[s%+(8.41876)2][s>+(12.49644)2]
,(s) /f(s) = 4.23934[s2+(3.52834)2)/A(s)
Ay(s) = [s24+(1.57528)%][s%+(4.83424)?]

0y (s) /f(s) = 2.02296 / [s%+(1.57528)?]

TRANSFER FUNCTIONS - LANCZOS MODE MODELS
1, (s)/(s) = 18.29893[s2+(3.17763)2][s24(6.59014)2]

[s2+(10.97092)%)/A(s)

Ay(s) = [s2+(1.575285)][s2+(4.83427)%]

[s%4(8.48668)2][s2+(15.21009)%]
i (s) /f(s) = 7.14344[s2+(3.06112)2)/A(s)
Ay (s) = [s%4+(1.57529)1][s%+(5.19414)%]

i, (s) /f(s) = 2.51446 / [s%+(1.5857)2]




POLES AND ZEROS OF REDUCED-ORDER MODELS

EXACT  4DOF 4DOF 2DOF 2DOF
POLES NORMAL LANCZOS NORMAL LANCZOS
(6DOF)

1.57528 1.57528 1.57529 1.57528 1.57529

4.83424 4.83424 4.83427 4.83424 5.19414

8.41876 8.41876 8.48668 - -
1249644  12.49644 15.21009 - -

TABLE 2. POLES OF REDUCED-ORDER MODELS

EXACT 4DOF 4DOF 2DOF 2DOF
POLES  NORMAL LANCZOS NORMAL LANCZOS
(6DOF)
3.17759 3.28270 3.17763 3.52834 3.06112
6.57266 6.82929 6.59014 - -
10.39230 10.94259 10.97092 - -
14.65693
18.85315

TABLE 3. ZEROS OF REDUCED-ORDER MODELS

STATIC RESPONSE COMPARISON

Normal Lanczos No. of

Mode Mode Modes
Model Model
(0/f)g 096961  0.99951 4
" 0.91005  0.99980 2
" 0.81521  1.00000 1

" 1.00000 1.00000 6(EXACT)

TABLE 1. TRANSFER FUNCTIONS EVALUATED AT 5=0

These two tables compare poles and zeros of normal mode models and Lanczos
vector models and the static response of normal mode and Lanczos vector models.
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Direct frequency response functions (tip displacement/tip force) are shown for nor-
mal mode models and Lanczos vector models. The Lanczos models have improved

low-frequency performance.
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Control maneuvers, such as slewing, are transient response problems. The next
examples compare transient response solutions of normal mode an Lanczos vector

models when the structure is subjected to step and ramp excitation. Two force distribu-
tions are illustrated.
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These are modal and Lanczos solutions for a step force applied at the tip. Both
displacement and strain solutions are shown. Note that the Lanczos solutions converge a
little better than the normal mode solutions do.
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These are modal and Lanczos solutions for opposing forces applied at nodes 1 and
3 with a ramp time history. Note that the modal solutions are very poor, while the Lanc-
zos solutions show excellent displacement and strain convergence.
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CONCLUSIONS AND RECOMMENDATIONS

« Lanczos - mode models represent low-
frequency forced response better than do nor-
mal mode models.

» Lanczos mode models can be developed for
both continuous and finite element structural
representations.

 Lanczos mode models for systems with multi-

ple inputs and/or rigid body modes should be
developed.

« Numerical stability of the Lanczos algorithm
should be assessed.

» Control system designs employing Lanczos
mode models should be attempted.




